Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems
نویسنده
چکیده
In this article, we prove some weighted pointwise estimates for three discontinuous Galerkin methods with lifting operators appearing in their corresponding bilinear forms. We consider a Dirichlet problem with a general second order elliptic operator.
منابع مشابه
Pointwise a Posteriori Error Control for Discontinuous Galerkin Methods for Elliptic Problems
An a posteriori error bound for the maximum (pointwise) error for the interior penalty discontinuous Galerkin method for a standard elliptic model problem on polyhedral domains is presented. The computational domain is not required to be Lipschitz, thus allowing for domains with cracks and other irregular polyhedral domains. The proof is based on direct use of Green’s functions and varies subst...
متن کاملPointwise error estimates of the local discontinuous Galerkin method for a second order elliptic problem
In this paper we derive some pointwise error estimates for the local discontinuous Galerkin (LDG) method for solving second-order elliptic problems in RN (N ≥ 2). Our results show that the pointwise errors of both the vector and scalar approximations of the LDG method are of the same order as those obtained in the L2 norm except for a logarithmic factor when the piecewise linear functions are u...
متن کاملLocal Anaylsis of Discontinuous Galerkin Methods Applied to Singularly Perturbed Problems
We analyze existing discontinuous Galerkin methods on quasiuniform meshes for singularly perturbed problems. We prove weighted L2 error estimates. We use the weighted estimates to prove L2 error estimates in regions where the solution is smooth. We also prove pointwise estimates in these regions.
متن کاملLocal analysis of discontinuous Galerkin methods applied to singularly perturbed problems
We analyze existing discontinuous Galerkin methods on quasi-uniform meshes for singularly perturbed problems. We prove weighted L2 error estimates. We use the weighted estimates to prove L2 error estimates in regions where the solution is smooth. We also prove pointwise estimates in these regions.
متن کاملA Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints
This paper is the second part of our work on a priori error analysis for finite element discretizations of parabolic optimal control problems. In the first part [18] problems without control constraints were considered. In this paper we derive a priori error estimates for space-time finite element discretizations of parabolic optimal control problems with pointwise inequality constraints on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 75 شماره
صفحات -
تاریخ انتشار 2006